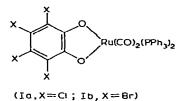
Preliminary communication

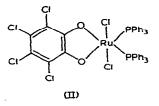

Oxidative-addition of o-quinones to ruthenium complexes

A.L. BALCH and Y.S. SOHN

Department of Chemistry, University of California, Davis, California 95616 (U.S.A.) (Received April 14th, 1971)

Recently the oxidative-addition of o-quinones to low-valent d_{10} and d_8 complexes (e.g. (Ph₃P)₄Pt, M(CO)Cl(PPh₃)₂ (M = Ir, Rh)) have been reported¹⁻³. We now report that analogous addition of o-quinones to Ru⁰ and Ru^{II} complexes occur under mild conditions.

Reaction of tetrachloro-1,2-benzoquinone with *trans*-Ru(CO)₃ (PPh₃)₂ in dichloromethane solution at 25° yields the orange, crystalline complex Ru(o-O₂C₆Cl₄)(CO)₂(PPh₃)₂ (Ia). A similar reaction occurs with tetrabromo-1,2-benzoquinone to give the golden complex Ib. In both complexes the carbon monoxide ligands are located in *cis* positions since two C=O stretching frequencies are observed for each in their infrared spectra (2044,



1983 cm⁻¹ for both Ia and Ib in dichloromethane solution). The strong carbonyl absorptions of the free quinone are absent in the complexes Ia and Ib; rather, absorptions characteristic of the reduced ligands (at 1500w, 1290s, 790s, and 740 m cm⁻¹ for Ia in KBr matrix) are observed. The oxidative nature of the reaction leading to I is confirmed by an alternate preparation of Ia from the Ru^{II} complex, *cis*-Ru(CO)₂(PPh₃)₂Cl₂, and tetra-chloropyrocatechol in the presence of base.

Of greater interest are the observations that a variety of o-quinones react with the Ru^{II} complex $\operatorname{Ru}(\operatorname{PPh}_3)_3\operatorname{Cl}_2$. Oxidative-addition reactions of d_6 complexes in general have received less attention than is the case for d_{10} and d_8 systems, although oxidative reactions of Mo⁰, W⁰, and Re^I complexes with halogens have been described^{4,5}. Addition of tetrachloro-1,2-benzoquinone to $\operatorname{Ru}(\operatorname{PPh}_3)_3\operatorname{Cl}_2$ leads to the formation of the green, monomeric complex $\operatorname{Ru}(o-O_2C_6\operatorname{Cl}_4)(\operatorname{PPh}_3)_2\operatorname{Cl}_2$ (II). The infrared spectrum of this complex closely resembles that of Ia except for the absence of bands associated with the coordinated carbon monoxide and the presence of a Ru–Cl stretching frequency at 342 cm⁻¹ (nujol mull). The observation of a single Ru–Cl stretching frequency, which is

J. Organometal. Chem., 30 (1971) C31-C32

in a region consistent with a *trans*-RuCl₂ group⁶, defines the coordination as diagramed. 1,2-Naphthoquinone, which is a weaker oxidant than tetrachloro-1,2-benzoquinone, also

adds to Ru(PPh₃)₃X₂ (X = Cl, Br) to yield blue Ru-(1,2-O₂C₁₀H₆)(PPh₃)₂X₂. Similarly another weakly oxidizing quinone, 9,10-phenanthrenequinone, adds to both Ru(PPh₃)₃Cl₂ and Ru(SbPh₃)₃Cl₂ to yield Ru-(9,10-O₂C₁₄H₈)(PPh₃)₂Cl₂ and Ru-(9,10-O₂C₁₄H₈)(SbPh₃)₂Cl₂, respectively. The infrared spectra of the complexes derived from 1,2-naphthoquinone and 9,10-phenanthrenequinone do not exhibit bands in the region where the carbonyl groups of the parent quinones absorb; rather, bands characteristic of the reduced forms of these ligands are present. These new complexes, which formally contain Ru^{IV}, are electron-deficient in the sense that they do not obey the inert gas rule. Certain six-coordinate Mo^{II} and W^{II} (d₄) complexes react with Lewis bases to form seven-coordinate species^{4,7}. However, attempts to add small Lewis bases to the new six-coordinate Ru^{IV} complexes reported here have not as yet been successful.

ACKNOWLEDGEMENT

The research was supported by grant Am-14946 from the National Institutes of Health.

REFERENCES

1 Y.S. Sohn and A.L. Balch, J. Amer. Chem. Soc., 93 (1971) 1290.

- 2 J.S. Valentine and D. Valentine, Jr., J. Amer. Chem. Soc., 92 (1970) 5795.
- 3 D.M. Barlex, R.D.W. Kemmitt and G.W. Littlecott, Chem. Commun., (1971) 199.
- 4 J.R. Moss and B.L. Shaw, J. Chem. Soc., A, (1970) 595 and references therein.
- 5 W.J. Kirkham, A.G. Osborne, R.S. Nyholm and M.H.B. Stiddard, J. Chem. Soc., A, (1965) 550.
- 6 J.D. Gilbert and G. Wilkinson, J. Chem. Soc., A, (1969) 1749.
- 7 R. Colton, G.R. Scollary and I.B. Tomkins, Austral J. Chem., 21 (1968) 15.

J. Organometal, Chem., 30 (1971) C31-C32